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Abstract. Upper and lower bounds are established on the second-order energies of excited 
stationary states of an atom by a coordinate free analysis of suitably modified Hylleraas 
functionals. The work proves more rigorously and generalizes some of the earlier results 
of Sharma. A misunderstanding regarding the correct orthogonality condition for the 
first-order wavefunction of an excited state is corrected. 

1. Introduction 

Sharma (1967, 1569) has introduced modified Hylleraas functionals whose extrema 
respectively provide upper and lower bounds to the second-order energies of the excited 
stationary states of atoms. The purpose of the present paper is to give a coordinate free 
proof of a generalized version of the earlier results. The generalization removes the 
requirement of nondegeneracy in the spectrum of the zero-order Hamiltonian. A result 
stated without proof by Miller (1966) is also formally proved.. These proofs are simpler, 
more elegant and more rigorous than the earlier ones and being coordinate free are 
automatically valid for any particular choice of coordinates (basis). The method used 
is that of the calculus on Banach spaces developed by Frechet and others in the 1920s 
and eloquently described in a recent book by Cartan (1971). Quantum mechanics is 
formulated in a Hilbert space over the complex field. However, in calculations on atomic 
energies it is often possible to complete the integration over the angular parts which 
reduces the problem to one in the Hilbert space of real square integrable functions on 
[0, CO] .  We shall, therefore, restrict our proofs to problems in a Hilbert space over the 
real field. Complications arise in generalizing these results to a complex Hilbert space. 
These complications will be discussed and resolved in a later paper. 

2. Formalities 

All vector spaces are over the real field. The space of functions from a vector space V, 
to another vector space V, will be denoted by (V,, V,) and the subspace of continuous 
linear functions from VI to V, will be denoted by L(V,, V2). The space of continuous 
bilinear functions from V, x V,  to V, will be denoted by BL(V, x V, , V,). Letfg (V,  , V,) 
and let M c V, . The restriction off to M will be denoted by f r M .  The restriction 
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f P Y of a linear mapfon a Hilbert space 2 to a subspace ’3 can be extended to .X by 

and there are considerable notational advantages in denoting this extension also by 
f i* 9. Thus if E is the orthogonal projection on 9, in our notationf i* Y = fo E .  

2.1. Some elementary dejnitions 

Definition 1. Let B be a real Banach space and 1etf:B + R be a functional. fis said 
to be differentiable at a point x if there exists anf: E L(g,  R) such that 

where / I  / /  is a norm on $3 (for the definition of a norm see Halmos 1957). The linear 
mapf: is called the derivative offat x. Iffis differentiable at every point x E W thenfis 
said to be differentiable in W. Note that in this case the derivativef‘ E (9, L(B, R)) and 
its valuefk at a point x E B is a linear functional on 93. 

Definition 2. (The coordinate free definition of the gradient.) Let S be a real Hilbert 
space (note that a Hilbert space is necessarily also a Banach space). L e t f : Z  -.+ R be a 
functional which is differentiable at x E .X Thenf: E L(X R) (observe that L ( Z  R) is 
the dual of 2). Then from the Riesz representation theorem we know that there exists 
a unique y E X such that 

f X P )  = (Y, P> V P E Z  

where (, ) is an inner product (for a definition see Halmos 1957) on 2 and satisfies 
I/p(12 = ( p ,  p ) .  The unique vector y is called the gradient offat  x and is denoted by 

y = gradf(x). 

2.2. The higher derivatives of a functional and its Taylor expansion 

L e t f : S  + R be differentiable in X Thenf’ E (x L ( x  R)). I f f ’  is also differentiable 
in %then its derivativef”, called the second derivative off, belongs to  (4 L(X L ( x  R))). 
It is shown by Cartan (1971) that L(X L ( x  R)) is isomorphic with the space 
B L ( S  x X R). Hencef; can be regarded as a bilinear functional on X 

The higher derivatives are defined analogously and the nth derivative at x E S can 
be regarded as an n-linear functional on X 

Let f:# -, R be a functional which is (n+ 1) times differentiable in x then 

1 1 l lfb”+”ll lIplln+l 

(n+ l ) !  
f(a + p )  - f ( a )  - fh(p)  - zff@, p )  - . . . - , f r ) ( p ,  !.!imes. 

n .  

This inequality is known as the Taylor formula with the Lagrange remainder. For a 
proof see Cartan (1971). 

2.3. Stationary points, maxima and minima of a functional 

Let f:X -, Iw be a functional. Suppose f is twice differentiable in X A point x E X 
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such thatf i  = 0 is called a stationary point off. It follows from the Taylor formula that 
if f:(p, p )  > 0 ; Vp E X then f has a minimum a t  the stationary point, if f : ( p ,  p )  < 0 ; 
Vp E X thenf has a maximum at the stationary point and iff:@, p )  has both positive 
and negative values for particular choices of p E JP then f has a saddle point at  the 
stationary value. Iff: = 0 one has to study higher derivatives to determine the nature 
of the stationary point. We shall not be concerned with such cases. 

2.4. The Hamiltonian H ,  and its spectral resolution 

It is supposed that the Hamiltonian H ,  of the system is a self-adjoint endomorphism 
(a continuous linear function from X to X )  on a real Hilbert space X It follows from 
the continuity of H, that its spectrum A(H,) is bounded. It will be further assumed 
that the lower part of the spectrum is purely discrete. Let the eigenvalues of the lower 
part of the spectrum arranged in a monotonically increasing sequence be denoted by 
{Ai)  ( i  = 0 , 1 , 2 , .  . .) and let E be the spectral measure of H,. Then from the spectral 
theorem we have 

r 
H ,  = J AdE,. 

A 

It should be noted that Eai is the projection operator on the eigenspace Xai of H ,  
belonging to the eigenvalue Ai and the dimension of X>., is the degeneracy of Ai. 

It should be pointed out that atomic Hamiltonians satisfy the requirements imposed 
on H ,  except that they are unbounded above so that they are not self-adjoint endo- 
morphisms but nevertheless they are essentially self-adjoint (for a definition see Kato 
1966). However, any variational calculation is done in a finite dimensional subspace; 
if P is the projection on this subspace then PH,Pis necessarily bounded. Furthermore, 
by truncating the true spectral resolution of the actual Hamiltonian at  a sufficiently 
large value of A we get a bounded self-adjoint operator on 2 which, for all practical 
purposes, is a good enough approximation to H,. 

The following properties of H ,  will be used in later sections : (i) H ,  commutes with E ,  
(ii) if P is a projection on a swbspace which reduces H,, then If, commutes with P, and 
(iii) i fa  subspace M is invariant under H,, then M reduces H,. 

These properties follow from the self-adjointness of H ,  (for proofs see Halmos 1957). 

2.5. The second-order energy and the Hylleraas functional 

Let a state represented by a normalized vector mi belonging to the eigenspace be 
subjected to a self-adjoint perturbation H,.  The first-order correction A{’) to the 
eigenvalue is given by 

If the eigenvalue Ai is degenerate, we shall suppose that if aPi is any other eigenvector 
belonging to Ai which is orthogonal to mi then it is also orthogonal to H , Q i .  We know 
from the degenerate perturbation theory that states of physical interest satisfy this 
requirement. 

The second-order correction A i 2 )  to the eigenvalue is given by 
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where Y is the first-order correction to the state vector and is a solution of 

( H o - A J Y  +(Hl-Ajl))@i = 0. (4) 
It is easy to verify that Y has a unique component in X €3 HA, and an arbitrary com- 
ponent in X;, ; this arbitrariness in Y is removed by a normalization condition on the 
perturbed state vector but is ofno significance as far as the calculation of 121’’ is concerned. 
If Aj belongs to the point spectrum of H o  and i # j, then since E , ,  and Ho commute, we 
have 

Let S denote the continuous spectrum of Ho, then EsY is the unique solution of 

( H o  - AJEsY = - Es(H1- Ail’)@i. (6) 

The Hylleraas functional h : X + R is chosen in such a way that its gradient is twice 
the left hand side of equation (4) (this is easily achieved by using rules for differentiating 
some elementary functionals given by Cartan (1971) and Lang (1970)). Thus 

(7) 
I t  follows that any solution Y of equation (4) is a stationary point of h and the value of 
h at any such Y is Ai’). The second derivative of h is computed quite easily and its value 
at ( p ,  p )  E X x 2 is given by 

Nx)  = ( x ,  (H, -J - i )x>  + 2 ( ~ ,  (HI -Aj l ) )@j) .  

y(p, P) = 2 ( ~ ,  (HO-Ai)p> (8) 
which is positive ifp E Hs or X;, wherej > i and is negative if p E HA, wherej < i. Thus 
unless Ai is the lowest eigenvalue Y is a saddle point of h (for an alternative proof see 
Sharma 1967). 

In the next section we modify the Hylleraas functional to obtain two functionals such 
that any solution Y of equation (4) is a stationary point of each of the functionals and 
Ai’) is the maximum value of one of the functionals and the minimum value of the other. 

3. The theorems 

Theorem 1. In the notation of the preceding section the following is valid: 

‘ i + 1  -An11 ( “ 1 Q i ) l I  

1 
M x )  = w - 7  Ai+ 1 -* i  1 IItgradh(~)II’+ n < i  1 (1i-U Ai+l- l . i  X+m 

(9) 
n < i  

Proof. We first consider the functional m. By setting its first derivative equal to zero, 
we get 

H o - 1 .  
(1 -e) {(Ho-Ai)x +(HI - Ail’Pi) 

(10) H1@i + n < i  (li-A”)”+’-”E,”(~+-) J.i+ - A i  A” - Ai = 0. 

We shall first show that a solution of this equation has a unique component in 
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He( @j: HA,) and this unique component is identical with the unique component in 
He(@jL; HA,) of a solution Y of equation (4). Letj  > i + 1, we operate on equation 
(IO) with E,,  and remembering that E,, commutes with H, and that E,, is a projection 
on an eigenspace of H, belonging to the eigenvalue l j ,  we have 

(I-*) {(Aj-Ai)E, ,x+E,j(Hl-J. i l ) )@i}  = 0. 
A i +  1-4 

Since 

this implies that 

which is identical with E,j’-€’. 
Finally we operate on equation (10) with E ,  and get 

(I-*) {(Ho-Ai)Esx+Es(Hl-A\l))@i} = 0 
4 + 1 - &  

or 

((Ho - AJEsx + Es(H1- A\’))@i} = 0. (14) Ai+ 1 -Ho 
A+ 1 - 4 

( H o - l i ) E s ~ +  Es(H1 - l . j l ) ) @ i  = 0 

Since the restriction of (Ai+ - H,) to Xs is invertible, we can conclude that 

(15) 

which is identical with equation (6). This proves the assertion regarding the uniqueness 
and the nature of the component of the solution of equation (10) in HpO(@j2 H’,). 

By using the invariance of the subspaces X,, and Xs under H, and the Fourier 
expansion theorem for Hilbert spaces we have 

m(x) = “9 + c m(E,,x) (16) 
j 

and 

where 

and Y is any solution of equation (4). A straightforward evaluation of m(E,,x) for j < i 
o r j  = i +  1 leads to m(E,,X) = A!;) which is independent of x and is a constant. Further- 
more it is easy to verify that m(E,,x) = @) = 0. From these facts it follows that a 
solution of equation (IO) has an arbitrary component in H j .  Some further 
elementary computations enable us to conclude that the value of m at any solution x 
of equation (IO) is A!’). Finally we show that this value of m is its maximum value. For 
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this we compute m” a t  ( p ,  p )  E .X x 2 ; we find 

Using the spectral decomposition of H o  in the form 

H o  = CAnEAo+ i.dE, 
n J. 

equation (19) can be written as 

from which i t  follows that m”(p, p )  6 0 and m”(p, p )  = 0 if and only if p E ZA, 0 A?,.,.,+ i ,  

but we have already seen that the value of m at x E X does not depend on the component 
of x in XAn 0 XAz +, . 

By setting the first derivative of M equal to  zero, one gets an equation whose solution 
has a unique component in 2 @ ( 0 : , = ,  XAn) and this unique component is identical 
with the unique component in this subspace of a solution Y of equation (4). The value 
of M is constant in O f E 1  XA, and at  any stationary point of M its value is A:’). By 
examining the second derivative one is able to conclude that this value is a minimum. 
The details of the analysis are exactly similar to those for m and are therefore omitted. 

Theorem 2. Let Y be a subspace of X invariant under H o .  Let Y’ be another 
subspace such that Y c 3‘. Then the restriction of the Hylleraas functional h to 9’ can 
be written as 

h ‘ 9’ = h fi Y + h  A ( Y ’ Q 9 ) .  (22)  

Furthermore if Xi., c B ( j  # i )  and x is a stationary point of h f 9’ then 

EA,X = EA..,Y (23) 

where Y is a solution of equation (4). 
Proof. We recall that the projection E on Y commutes with H o .  Let E’ be the pro- 

jection on %’. Since $9 c %‘ i t  follows that EE’ = E’E = E = E* and E’ = E+E’-E.  
The restriction of h to Y‘ can be written as 

~ ( E ’ x )  = (E’x,  ( H O - & ) E ‘ X ) + ~ ( E ’ X ,  ( H I  

( E X ,  (H, - ?.,)EX) + 2( E X ,  ( H I  - lu!l))@i) + ((E’ - E)x, ( H o  - AJ(E’- E ) x )  

+2((E’-  E)x ,  (HI -A{’ ) )@~)+((E’-E)x ,  (HO-&)EX) 

+ ( E X ,  ( H ~ - I - J ( E ’ - E ) X ) .  (24) 

By using the properties of E described in the first two sentences of the proof, we see that 
the last two terms in the above expression are zero. Hence we can write 

~ ( E ‘ x )  h(EX) + h((E’ - E)x)  (25 )  

h Y‘= h /* %+h ‘ (9’09). (26) 

or, in other words (cf the last sentence of the first paragraph of 0 2) 
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From this equation it follows that 

( h  r 9’); = ( h  P Y);+(h P (9’ @ 3)); (27) 

where the subscript denotes the point at  which the value of the function is being con- 
sidered. L(Y’, R) has a unique decomposition as L(Q R) @ L((9’ @ %), W) and 
( h  r 3’): = 0 implies that 

( h  r 9); = 0 = ( h  r (3’ @ 3));. (28) 

Hence 

grad(h r Y)(x) = grad(h r (9’ @ %))(x) = 0. 

From this the last part of the assertion follows by observing that grad(h P 3)  remains 
unaltered if Y’ = X 

Corollary. Let Y = 0;:: c Y’, then the stationary value of h r Y‘ is an upper 
bound to Ai2) .  

Proof. We have seen that h has a maximum in Y and a minimum in Y’ and the 
value of h a t  any point x is equal to the sum of the values of h at the components of x 
in % and 9’ respectively. From the preceding theorem it follows that under the con- 
dition in the hypothesis, at a stationary point of h r Y’ its component in Y is the 
maximum value of h in 3 On the other hand 9’ @ Y is a subspace of Y’, hence the 
stationary value in this subspace is either greater than or equal to the minimum value 
of h in 9’. Thus the stationary value of h is an upper bound to Ai2) .  This result was 
first stated without proof by Miller (1966). 

We conclude this section with the observation that all results concerning the 
Hylleraas functional proved by Sinanoglu (1961), Miller (1966) and Sharma (1967,1969) 
follow as immediate and trivial corollaries of these two theorems. 

4. The orthogonality condition for a first-order wavefunction for an excited state 

Sharma (1968) had tried to remove a longstanding misunderstanding regarding the 
orthogonality condition which must be imposed on the first-order wavefunction of an 
excited state of an atom in order that the second-order energy calculated with its help 
may be an upper bound to the true value. I t  should be observed that the energy cor- 
responding to an approximate normalized wavefunction is just the expectation value 
of the Hamiltonian in the state represented by the approximate wavefunction. If is 
a normalized wavefunction with an expansion of the form 

where Z - ’  is a perturbation parameter (ie the Hamiltonian is Ho+Z- ’H, ) ,  Ojo) is an 
exact eigenfunction of H, belonging to  the value Ai and the letter A after @{I) and @!2) 

denotes the fact that these are approximate, then the corresponding second-order energy 
is 

(31) 

is an exact eigenfunction of H ,  and that the 

A{’)A = (@{‘)A, H0@’)A) +2(@”A, H,@!”) +2(@i2)A, H,@O’) = h(@i’)A) 

where we have used the fact that 



466 C S Sharma and I Rebelo 

normalization of Oi implies that 

(@{')A,@!')) = 0 

and 

2(@i2'A, @PIo') = -(@"A, @:''A). 

(32) 

(33) 
Thus, whether or not the approximate first-order wavefunction is determined through a 
variational calculation, the value of the corresponding second-order energy is just the 
value of the Hylleraas functional at the approximate first-order wavefunction. We have 
already seen that if 9 is the subspace spanned by the eigenfunctions of H, belonging 
to eigenvalues less than Ai ,  then h has a maximum in Y and a minimum in 3'. Y is 
finite dimensional and i t  is easy to calculate this maximum, but the minimum value in 
9' is not known. Thus the only way to ensure that the approximate first-order wave- 
function gives an upper bound to the second-order energy is to make sure that the 
component of @{')A in Y is the point where h has its maximum in Y and this happens 
when the component of @!')A in Y is identical with the component in Y of the exact 
first-order wavefunction. From equation ( 5 )  we see that if @jo) is any eigenvector of H, 
belonging to an eigenvalue Aj less than Ai, then @{')A must satisfy 

This is the orthogonality condition of Sharma (1968). 

and the correct orthogonality condition should be simply 
Midtdal et ai (1969) suggest that Y should always be a subspace of the trial subspace 

(@{"A, + (@io', @;"A) = 0. (35) 
They claim to have established the equivalence of the orthogonality conditions (34) and 
(35). This claim is both incorrect and misleading. If Y is a subspace of the trial space, 
then it follows from the corollary to theorem 2 that the corresponding A{"A is an upper 
bound to the true value and the condition (34) is satisfied. It is also true that if @jl) is 
determined with the help of a variational calculation involving the Hylleraas functional 
in the same trial space, then equation (35) is also satisfied. This, however, does not make 
the two conditions equivalent. We wish to make several points on this issue. Firstly, 
condition (34) is applicable irrespective of the method used in finding the approximate 
first-order wavefunction and there are methods, even variational ones, other than the 
method for which condition (35) is applicable, the Hartree-Fock method being a good 
example. The Hartree-Fock first-order wavefunction for the 2s2 ' S  state of helium 
satisfies condition (35) with respect to the ground state if the approximate first-order 
wavefunction for the ground state is taken to be the first-order Hartree-Fock wave- 
function, but it does not satisfy condition (34). The projection operator usually used in 
calculating the energies of autoionizing states of atoms violates the condition (34) with 
respect to infinitely many lower lying states but can be made to satisfy condition (35) 
with a suitable choice of @jl)A for each lower lying state. Secondly, it is completely 
pointless to include Y in the trial space, this involves evaluating the already known 
quantities given by equation (34) by a variational calculation and therefore is clearly 
wasteful. Thirdly, as far as the orthogonality condition for @!')A is concerned, the 
approximate first-order wavefunctions of lower lying states @;')A ( j  < i )  are completely 
irrelevant. Finally, the choice of the same trial space for the calculation of the first- 
order wavefunctions for different states is highly unlikely to be a judicious one. 
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